Trenchless Methods for Pipeline Construction

PRESENTATION TO PIPELINERS CLUB OF ATLANTA | NOVEMBER 2017

State-of-the-Industry for Trenchless Pipeline Construction

- 1. Trenchless Techniques Overview
 - i. Horizontal Directional Drilling HDD
 - ii. Micro-Tunneling
 - iii. Direct Pipe®
 - iv. Jack & Bore and Other Guided-Bore Techniques
- 2. The School of Mud
 - 1. Inadvertent Returns (Frac-Outs) of Drilling Muds

Horizontal Directional Drilling

- In use since early 1980s; significant improvements over time
- Three step method: pilot hole / reaming & conditioning / product pipe pullback
- Works with steel, PVC, DI, and HDPE materials; Typical diameters 2" to 60"
- Longest lengths exceed 8,000' / Intersect method* > 12,000'
- Versatile accurate steering & monitoring; vertical and horizontal curves
- Borepath length & geometry are controlled by product pipe properties & obstacle crossed
- Handles most geologic conditions <u>except</u> loose granular materials, karst, soft cohesive soils

HDD Drill Entry Side Layout

- Entry side requires area for staging equipment; usually a minimum of 100'x150' is necessary for large HDD installations
- Key equipment: drilling machine, drill pipe, mud pump, fluid system and tank, power unit and controls, storage of bentonite mud, tools and spare parts, mud return pit
- Consideration should be given to maintaining access for semi-trucks and construction equipment; cranes and excavators will need to maneuver in the workspace

HDD Drill Exit Side Layout

- The drill exit side is where the product pipe will be fabricated and pulled into place
- Typical pipe stringing area = 50'; wide enough to allow pipe fabrication & testing
- Ideal length = long enough to fabricate the entire section of the HDD
- If space is limited, fabricate in sections and pull-back in series
- Mud pit is typically dug to catch drilling fluid returns
- Cranes & backhoes + guides typically used to position pipe for pullback
- Roller guides reduce friction during pullback

HDD Design Approach

- Engineered Design versus Contractor Design/Construct
- Engineered design needed when Owner competitively bids project - provides uniform bidding platform
- If Engineered Design, designer must transfer liability of HDD completion – done by clauses in the Contract Documents
- Some Owners have a preferred driller – work with them on design and negotiate cost
- Pipe stress calculations for installation and operation

	URS	Virainia Rea	ch			Monday	March 10	2014	
	Pine Ma	aterial Prop	erties			Install	ation Prone	orties	
Pine	Outside Dia	ameter (D):	10.00	in	Coel	fecient of Frid	ction (IL)	0.30	
Minimum Wall Thickness (t)			0 365	in	Eluid	Drag Coeffici	ient (IL)	0.06	nei
Medulaus of Electicity (C):			0.000	in .	Pilling Mud Dansity (umud).		0.00	psi n m ³	
Modulous of Elasticity (E):			2.9E+07	psi	Drilling Wud Density (Ymud):		09.00	lb/ft	
Spec. Min. Yield Strength (SMYS):			42,000	psi	vvater Density (γ _{wa}):			62.40	lb/ft ³
Bending Moment of Inertia (I):			128.21	in	Ballast Weight (W _b) :			29.25	lb/ft
Poisson's Ratio (v):			0.30	steel	Displaced Mud Weight (W _m):		48.98	lb/ft	
Dia. to Wall Thickness Ratio (D/t):			27.40		Effect	tive Wgt Balla	sted (We):	17.83	lb/ft
Coeffecient of Thermal Expansion:			6.5E+06	in/in/F	Effective Wgt Submerged (W _e):			-11.42	lb/ft
Empty Pipe Weight:			37.56	lb/ft	Above Ground Load (W.):			30,484	lb
Pipe Interior Volume:			0.47	ft ³ /ft	Allowable Pull Force :			1.86E+06 Newton	
Pipe Exterior Volume:			0.55	ft ³ /ft	Pine Face Area (A)			11.05 in ²	
			0.00		Hydrokinetic Pressure (p):			10.00	psi
					H	ydrokinetic F	orce (FHK):	1178.10	lb
				Drille	d Path Input	-			
	Sta	Drill Entry	000+00	Dille	a Faul input	Drill E	ntry Angle:	12	0
Elev. Drill Entry			6 56		Entry Tangent		338 ft		
Elev. Bottom			-85.22		Radius Entry Curve:			984 ft	
Sta. Drill Exit.			040+40		Bottom Tangent:			2,970 ft	
Elev. Drill Exit:			6.56		Radius Exit Curve:			984 ft	
Elev. Obstacle:			-45.54		Exit Tangent:			338 ft	
Clearance Check:			OK	>5'	Drill Exit Angle:			12 °	
Horizontal Curve?:			YES		Horizontal Curve Radius:			984 ft	
					Horizontal Curve Entry Angle:			15 °	
					Horia	zontal Curve	Exit Angle:	15	0
				Drilled	Path Geometry	'			
		Entry	VPC1	VPT1	HPC1	HPT1	VPC2	VPT2	Exit
	Elevation	6.56	-63.71	-85.22	-85.22	-85.22	-85.22	-63.71	6.5
	Station	0000+00	0003+31	0005+35	0030+16	0033+73	0035+05	0037+10	0040+
Tota	Drill Length	0.00	338.00	544.09	3016.08	3373.39	3514.09	3720.18	4058.
				Pull Back	Forces (SI Uni	ts)			
	Above			Axial	Bending				Total
	Ground	Frictional	Fluidic	Segment	Frictional	Assumed	Average	Section Pull	Pullbac
	Load	Drag	Drag	Weight	Drag	Tension	Tension	Back	(Newton
Point 1	135,601	5,038	34,009	3,570	1	0	0	178,218	183,45
Point 2	1	1	20,736	1,094	19,950	200,170	204,349	41,780	225,23
Point 3	1	2,097	14,156	1	1	0	0	16,253	241,49
Point 4	1	27.000	35,952	4,698	11,567	262,445	267,601	52,216	293,70
Point 5	1	37,669	248,723	1 004	17 552	0	0	286,392	580,10
FUILO	1	1	20,730	-1,094	47,555	009,400	013,098	07,195	041,29

Subsurface Conditions

- Geotechnical investigation to determine subsurface conditions – key for construction risk and mitigation strategies
- Borings located at the entry and exit points + spaced along drill length
- Geologic survey should include: Soil Classification, Standard Penetration Test, Gradation Curves
- In rock survey should include cored samples with unconfined compressive strength, Mohs Hardness, RQD, % Recovery
- Loose soils, running sands make borehole stability more difficult; large cobbles and boulders can be show stoppers

The "Ideal" HDD:

- Straight line from entry to exit
- > Two vertical curves
- Radius of curvature per industry guidelines
- > Typical entry/exit angles: 8° 16°
- Under all obstacles with adequate clearances

Detroit River Crossing

- New pipeline proposed under Detroit River
- Tie-in to existing U.S. valve station
- New valve station on Canadian side

Detroit River Crossing

- Required to stay on one property
- Resulting alignment must have multiple horizontal & vertical curves
- Avoid structure foundations and salt cavern sink hole / buried building
- Limited pull-back work space will require 6 pipe sections

Winnipeg, Manitoba - CN Rail Grade Separation Project

- Relocate Two 8-Inch Oil Pipelines
- Tie-in to Valve Station & Down-stream Lines
- Coordinate Pipeline Relocation with Underpass Construction and Ancillary
 Improvements

Winnipeg, Manitoba -CN Rail Grade Separation Project

4

Micro-tunneling

- Uses a remote controlled, steerable, micro tunnel boring machine (MTBM) with jacking for forward motion
- Requires launch and receive shafts/pits at required pipe depth
- Works with steel, DI, PVC, clay pipe; typical diameters from 24" to 96"
- Max length depends on geology range of 1,500' to 2,000' achieved
- Cutter faces for soft ground, mixed ground and rock, above and below water table
- Maintains pressure against soil face to prevent caving
- Suitable for gravity pipelines requiring precise line and grade even in poor soil conditions

Direct Pipe®

- Combines the methods of micro-tunneling and HDD
- Uses a micro TBM to remove soil and steer
- Spoils and slurry removed via closed circuit lines laid in product pipe
- Pipe thruster works with 20" -60" steel pipe; 5° – 15° angles
- Typical max length is 4,500'
- Single-step method for fast installation of piping
- Handles wide range of geologic materials including gravel/cobles
- Smaller space needs then HDD

Jack & Bore

- Widely used, reliable, relatively inexpensive method
- Requires launch and receive pits at required pipe depth
- Spoils removed by auger bit inserted in casing pipe / product pipe; hydraulically pushed-in from behind
- Works with steel pipes typically 6" to 60" diameter
- Typical max lengths to 400' depending on soil conditions and pipe size
- Can install casing pipe or product pipe
- Can be used in both granular and cohesive soils; not applicable to rock

Other Guided Bore Techniques

- Various hybrid methods used by • contractors
- Typically use a pilot bore followed by • hole enlargement and pipe installation via push or pull methods

I-95 Crossing, Wilson, NC

- Laney method using excavated trench and suspended drill unit Product pipe pushed into hole behind auger

- HDD requires large amounts of drilling mud during all phases
- Five Key Functions:
 - i. Remove drill cuttings from the hole
 - ii. Lubricate and cool the drill bit and assembly
 - iii. Stabilize the borehole and formation
 - iv. Transmit hydraulic energy to the bit
 - v. Suspend cuttings during static periods

- Drilling Mud Requirements:
 - i. Optimize one or more of the five key functions
 - ii. Enhance productivity by preventing:
 - Slow drilling penetration rates
 - Stuck pipe
 - Lost mud circulation
- No universal fluid that works in all soil conditions; each crossing location requires compromises
 - Sand: unconsolidated formation requiring good cuttings suspension, lubrication and loss control
 - ii. Clay: consolidated formation requiring swelling inhibition and lubrication
 - Rock: consolidated/unconsolidated formation requiring good cuttings suspension and lubricity

- Inadvertent Returns of Drilling Mud:
 - Drilling mud pumped downhole follows path of least resistance <u>to</u> <u>the surface</u>
 - "Hydro-fracturing" or "frac-out" occurs to some degree on most crossings –direction/distance depends on subsurface
 - Can occur as a result of: rock fractures, low density soils, poor bore path design
 - iv. Release to uplands
 - v. Discharge to wetland, stream, or lake more problematic
 - vi. Non toxic, but can have physical impacts on waters

Queens Lake Dam, Williamsburg, VA

- Mitigation of Inadvertent Returns:
 - i. Pre-drill planning gather adequate geotechnical data
 - Select a good HDD design adequate depth, offsets, casings, etc.
 - Quantitative methods to estimate potential for IR (Borehole stability P_{MAX} , P_{MIN})
 - iv. Construction phase contractor qualifications, full-time mud engineer, downhole pressure monitoring, etc.
 - Contingency plans in case for monitoring during drilling and for spill response.

Preliminary Borehole Stability Analysis Results Jet Fuel Pipeline to Brisbane Airport

Questions?

Robert A. Marszalkowski, PE

277 Bendix Road, Virginia Beach, VA 23452

+1.757.499.4224

robert.marszalkowski@aecom.com

